
R Notebook

{r, warning = FALSE} library(readr) library(tidyverse) library(dplyr)
library(leaps) library(car) library(MASS)

{r, echo = FALSE} df_spotify <- read_csv("spotify-2023.csv")
#glimpse(df_spotify) #names(df_spotify)

1. Summary Statistics of variables selected for MLR

# Streams was originally of chr type. Changed it to dbl type.
df_spotify <- df_spotify %>% mutate(streams = as.numeric(streams))

par(mfrow=c(3,3))
hist(df_spotify$`danceability_%`)
hist(df_spotify$bpm)
hist(df_spotify$streams)
hist(df_spotify$`speechiness_%`)
hist(df_spotify$`valence_%`)
hist(df_spotify$`energy_%`)
hist(df_spotify$`acousticness_%`)
hist(df_spotify$`liveness_%`)
hist(df_spotify$`instrumentalness_%`)
# Remove this from OG model - data points don't make sense it context

# List your predictor columns exactly as they appear in your data
predictor_cols <- c("danceability_%",

"bpm", "streams", "valence_%", "energy_%", "acousticness_%", "liveness_%", "speechiness_%",
"mode_binary", "in_spotify_playlists"

)

# Creating mode_binary variable which is 1 if mode is Major and 0 for Minor.
df_spotify <- df_spotify %>% mutate(mode_binary = ifelse(mode == 'Major', 1, 0))

df_pred <- df_spotify %>%
mutate(

streams = as.numeric(gsub(",", "", as.character(streams))),
mode_binary = as.numeric(as.character(mode_binary))

) %>%

1



select(all_of(predictor_cols))

summary_table <- map_dfr(names(df_pred), function(v) {
x <- df_pred[[v]]
tibble(

variable = v,
n = sum(!is.na(x)),
mean = round(mean(x, na.rm = TRUE), 2),
sd = round(sd(x, na.rm = TRUE), 2),
min = round(suppressWarnings(min(x, na.rm = TRUE)), 2),
max = round(suppressWarnings(max(x, na.rm = TRUE)), 2)

)
})

summary_table

2. Data Cleaning for MLR

# Creating mode_binary variable which is 1 if mode is Major and 0 for Minor.
df_spotify <- df_spotify %>% mutate(mode_binary = ifelse(mode == 'Major', 1, 0))

# Streams was originally of chr type. Changed it to dbl type.
df_spotify <- df_spotify %>% mutate(streams = as.numeric(streams))

# Note that in streams, observation #575 had an inconsistency: instead of displaying # of streams, it displayed BPM110KeyAModeMajorDanceability53Valence75Energy69A. Thus, observation removed.
df_spotify <- df_spotify %>% filter(track_name != "Love Grows (Where My Rosemary Goes)")

Justification for interaction term prior to fitting model

major <- df_spotify[df_spotify$mode_binary == 1, ]
minor <- df_spotify[df_spotify$mode_binary == 0, ]

# Note that danceability is response variable
par(mfrow=c(2,2))
boxplot(df_spotify$`danceability_%`~ df_spotify$mode_binary)

# plotting relationship between Danceability % and bpm for major/minor
plot(df_spotify$`danceability_%` ~ df_spotify$bpm, xlab="Bpm", ylab="Danceability %", type="n")
points(major$`danceability_%` ~ major$bpm, col="blue")
points(minor$`danceability_%` ~ minor$bpm, col="black")
lines(lowess(major$`danceability_%` ~ major$bpm), col="blue")
lines(lowess(minor$`danceability_%` ~ minor$bpm), col="black")

# plotting relationship between Danceability % and `valence_%` for major/minor
plot(df_spotify$`danceability_%` ~ df_spotify$`valence_%`, xlab="`valence_%`", ylab="Danceability %", type="n")
points(major$`danceability_%` ~ major$`valence_%`, col="blue")
points(minor$`danceability_%` ~ minor$`valence_%`, col="black")

2



lines(lowess(major$`danceability_%` ~ major$`valence_%`), col="blue")
lines(lowess(minor$`danceability_%` ~ minor$`valence_%`), col="black")

# plotting relationship between Danceability % and `speechiness_%`s for major/minor
plot(df_spotify$`danceability_%` ~ df_spotify$`speechiness_%`, xlab="``speechiness_%`", ylab="Danceability %", type="n")
points(major$`danceability_%` ~ major$`speechiness_%`, col="blue")
points(minor$`danceability_%` ~ minor$`speechiness_%`, col="black")
lines(lowess(major$`danceability_%` ~ major$`speechiness_%`), col="blue")
lines(lowess(minor$`danceability_%` ~ minor$`speechiness_%`), col="black")

# Since relationship between danceability % and speechiness % seems to differ for major/minor (non parallel lines), this interaction was chosen. It also makes sense contextually: songs in major keys are typically perceived as brighter and more energetic, (hence, more danceability), while songs in minor keys often feel more somber or introspective.

2. Fit MLR Model

# Ensures categorical use for mode
df_spotify$mode_binary <- factor(df_spotify$mode_binary)

model <- lm(`danceability_%` ~ bpm + streams + `valence_%` + `energy_%` + `acousticness_%` + `liveness_%` + `speechiness_%` + mode_binary + in_spotify_playlists + mode_binary*`speechiness_%`, data=df_spotify)

summary(model)

3. Checking MLR Assumptions

# Need to check for linearity, constant variance, uncorrelated errors, and normality.
# How to? Plots!

# Residuals vs fitted plot
y_value <- resid(model)
x_value <- fitted(model)
plot(x = x_value, y = y_value, main="Residual vs Fitted", xlab="Fitted", ylab="Residuals")

par(mfrow=c(1,2))
# QQ Normality plots
qqnorm(resid(model), main = "Normal Q-Q Plot")
qqline(resid(model))

# Response vs Fitted plot
y_value2 <- df_spotify$bpm
x_value2 <- fitted(model)
plot(x = x_value2, y = y_value2, main="Response vs Fitted", xlab="Fitted", ylab="Actual Response")

# Plot of relationship between predictor variables and also outcome variable
pairs(c(df_spotify[, 18], df_spotify[, 7], df_spotify[, 9], df_spotify[, 15], df_spotify[, 19:25]))

3



par(mfrow=c(2,2))
# Residuals vs each predictor
plot(x = df_spotify$bpm, y = y_value, main="Residual vs Bpm", xlab="Bpm", ylab="Residual")
plot(x = df_spotify$streams, y = y_value, main="Residual vs Streams", xlab="Streams", ylab="Residual")
plot(x = df_spotify$`valence_%`, y = y_value, main="Residual vs Valence %", xlab="Valence %", ylab="Residual")
plot(x = df_spotify$`energy_%`, y = y_value, main="Residual vs Energy %", xlab="Energy %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = df_spotify$`acousticness_%`, y = y_value, main="Residual vs Acousticness %", xlab="Acousticness %", ylab="Residual")
plot(x = df_spotify$`liveness_%`, y = y_value, main="Residual vs Liveness %", xlab="Liveness %", ylab="Residual")
plot(x = df_spotify$`speechiness_%`, y = y_value, main="Residual vs Speechiness %", xlab="Speechiness %", ylab="Residual")

par(mfrow=c(1,2))
plot(x = df_spotify$in_spotify_playlists, y = y_value, main="Residual vs in_spotify_playlists", xlab="in_spotify_playlists", ylab="Residual")
# For categorical variable
boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Residuals")

HOW TO FIX:
1. Check Multi-collinearity among predictors
2. Check points that simply don’t make sense from descriptive stats
3. Transformations
4. Nested models

#1. Multi collinearity

# x includes all predictors in original model: in_spotify_playlists, streams, bpm, valence_%, energy_%, acousticness_%, liveness_%, speechiness_%
x <- cbind(df_spotify[, 7], df_spotify[, 9], df_spotify[, 15], df_spotify[, 19:21], df_spotify[,23:25])

x_num <- as.matrix(x)

qr(x_num)$rank
ncol(x_num)
# This shows that the rank is the same as number of columns (no lin dependent columns). FULL RANK

# vif(model)
# No vif > 5 = keep all predictors.

x_numeric <- x %>% select(-mode_binary)
cor(x_numeric)
# Also supports previous points

# THUS, NO MULTICOLLINEARITY IN OG MODEL

#2. Check for problematic observations

4



# leverage statistic
h_jj <- hatvalues(model)
# standardized residuals
r_j <- rstandard(model)
# cook's distance
D_j <- cooks.distance(model)
# dffits
dffits_j <- dffits(model)
# dfbetas
dfbetas_j <- dfbetas(model)

# number of predictors and observations
n <- nobs(model)
p <- length(coef(model)) - 1

# leverage cutoff
hcut <- 2 * ((p +1) / n)
# cook's distance cutoff
cookcut <- qf(0.5, df1 = p + 1, df2 = n - p - 1)
# dffits cutoff
fitcut <- 2 * sqrt((p+1)/n)
# dfbeta cutoff
betacut <- 2 / (sqrt(n))

# which observations are leverage points?
which(h_jj > hcut)
# which observations are regression outliers?
which(r_j > 4 | r_j < -4)
# which observations are influential by cook's distance?
which(D_j > cookcut)
# which observations are influential by dffits?
which(abs(dffits_j) > fitcut)

# After initial check of problematic observations, we realized that high influential points or outliers were very hit songs. For ex. observation 727 is Somebody that I used to Know. Extraordinary song = topping charts in 26 countries, including the U.S. Billboard Hot 100 for eight consecutive weeks.

# NO RATIONALE TO REMOVE ANY SONGS.

#3. Transformation of Variables

Normality

p_box <- powerTransform(cbind(df_spotify[, 18], df_spotify[, 7], df_spotify[, 9], df_spotify[, 15], df_spotify[, 19:24]), family = "bcnPower")
#summary(p_box)

# fix worst transformation first, check residual plots after every transformation, avoid too many transformations (interpretability)

# 1. Normality

5



t_y <- (df_spotify$`danceability_%`) ˆ 2 # value of lambda obtained by BoxCox

model_1 <- lm(t_y ~ bpm + streams + `valence_%` + `energy_%` + `acousticness_%` + `liveness_%` + `speechiness_%` + mode_binary + in_spotify_playlists + mode_binary*`speechiness_%`, data=df_spotify)

# Now we check residual plots

par(mfrow=c(2,2))
y_value_1 <- resid(model_1)
x_value_1 <- fitted(model_1)
plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="Residuals")

# Residuals vs each predictor
plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual")
plot(x = df_spotify$streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylab="Residual")
plot(x = df_spotify$`valence_%`, y = y_value_1, main="Residual vs Valence %", xlab="Valence %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = df_spotify$`energy_%`, y = y_value_1, main="Residual vs Energy %", xlab="Energy %", ylab="Residual")

plot(x = df_spotify$`acousticness_%`, y = y_value_1, main="Residual vs Acousticness %", xlab="Acousticness %", ylab="Residual")
plot(x = df_spotify$`liveness_%`, y = y_value_1, main="Residual vs Liveness %", xlab="Liveness %", ylab="Residual")
plot(x = df_spotify$`speechiness_%`, y = y_value_1, main="Residual vs Speechiness %", xlab="Speechiness %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = df_spotify$in_spotify_playlists, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spotify_playlists", ylab="Residual")
# For categorical variable
boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Residuals")

# Check normality just in case
# QQ Normality plots
qqnorm(resid(model_1), main = "Normal Q-Q Plot")
qqline(resid(model_1))

# random noise at tails

Constant Variance

In_spotify_playlist

# From Residual plots, we see that multiple predictors exhibit non constant variance. First, let's fix in_spotify_playlist

t_playlist <- log(df_spotify$in_spotify_playlists)

model_2 <- lm(t_y ~ bpm + streams + `valence_%` + `energy_%` + `acousticness_%` + `liveness_%` + `speechiness_%` + mode_binary + t_playlist + mode_binary*`speechiness_%`, data=df_spotify)

# Now we check for residuals

6



par(mfrow=c(2,2))
y_value_1 <- resid(model_2)
x_value_1 <- fitted(model_2)
plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="Residuals")

# Residuals vs each predictor
plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual")
plot(x = df_spotify$streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylab="Residual")
plot(x = df_spotify$`valence_%`, y = y_value_1, main="Residual vs Valence %", xlab="Valence %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = df_spotify$`energy_%`, y = y_value_1, main="Residual vs Energy %", xlab="Energy %", ylab="Residual")

plot(x = df_spotify$`acousticness_%`, y = y_value_1, main="Residual vs Acousticness %", xlab="Acousticness %", ylab="Residual")
plot(x = df_spotify$`liveness_%`, y = y_value_1, main="Residual vs Liveness %", xlab="Liveness %", ylab="Residual")
plot(x = df_spotify$`speechiness_%`, y = y_value_1, main="Residual vs Speechiness %", xlab="Speechiness %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = t_playlist, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spotify_playlists", ylab="Residual")
# For categorical variable
boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Residuals")

# Check normality just in case
# QQ Normality plots
qqnorm(resid(model_2), main = "Normal Q-Q Plot")
qqline(resid(model_2))

Streams

t_streams <- log(df_spotify$streams) # boxcox said 0.14 and log looks like cluster so better 0.3?

model_3 <- lm(t_y ~ bpm + t_streams + `valence_%` + `energy_%` + `acousticness_%` + `liveness_%` + `speechiness_%` + mode_binary + t_playlist + mode_binary*`speechiness_%`, data=df_spotify)

# Now we check for residuals

par(mfrow=c(2,2))
y_value_1 <- resid(model_3)
x_value_1 <- fitted(model_3)
plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="Residuals")

# Residuals vs each predictor
plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual")
plot(x = t_streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylab="Residual")
plot(x = df_spotify$`valence_%`, y = y_value_1, main="Residual vs Valence %", xlab="Valence %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = df_spotify$`energy_%`, y = y_value_1, main="Residual vs Energy %", xlab="Energy %", ylab="Residual")

7



plot(x = df_spotify$`acousticness_%`, y = y_value_1, main="Residual vs Acousticness %", xlab="Acousticness %", ylab="Residual")
plot(x = df_spotify$`liveness_%`, y = y_value_1, main="Residual vs Liveness %", xlab="Liveness %", ylab="Residual")
plot(x = df_spotify$`speechiness_%`, y = y_value_1, main="Residual vs Speechiness %", xlab="Speechiness %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = t_playlist, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spotify_playlists", ylab="Residual")
# For categorical variable
boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Residuals")

# Check normality just in case
# QQ Normality plots
qqnorm(resid(model_3), main = "Normal Q-Q Plot")
qqline(resid(model_3))

Recall from week 9 - BEST model selection
best <- regsubsets(t_y ~ bpm + t_streams + `valence_%` + `energy_%` + `acousticness_%` + `liveness_%` + `speechiness_%` + mode_binary + t_playlist + mode_binary*`speechiness_%`, data=df_spotify, nbest = 1, nvmax = 10, really.big = FALSE, method = "exhaustive")

summary(best)

#4. Nested Models

summary(model_3) # By looking at summary, we see that t_streams, and interaction term are not significant.

# Thus, we build reduced model without those
# Further supported by best selection model

model_3_reduced <- lm(t_y ~ bpm + t_playlist + `valence_%` + `energy_%` + `acousticness_%` + `liveness_%` + `speechiness_%` + mode_binary , data=df_spotify)

anova(model_3_reduced, model_3)
# small p value = drop = full model better
# large p value = reduced model better

summary(model_3_reduced)

# Now we check for residuals

par(mfrow=c(2,2))
y_value_1 <- resid(model_3_reduced)
x_value_1 <- fitted(model_3_reduced)
plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="Residuals")

# Residuals vs each predictor
plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual")

8



plot(x = t_streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylab="Residual")
plot(x = df_spotify$`valence_%`, y = y_value_1, main="Residual vs Valence %", xlab="Valence %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = df_spotify$`energy_%`, y = y_value_1, main="Residual vs Energy %", xlab="Energy %", ylab="Residual")

plot(x = df_spotify$`acousticness_%`, y = y_value_1, main="Residual vs Acousticness %", xlab="Acousticness %", ylab="Residual")
plot(x = df_spotify$`liveness_%`, y = y_value_1, main="Residual vs Liveness %", xlab="Liveness %", ylab="Residual")
plot(x = df_spotify$`speechiness_%`, y = y_value_1, main="Residual vs Speechiness %", xlab="Speechiness %", ylab="Residual")

par(mfrow=c(2,2))
plot(x = t_playlist, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spotify_playlists", ylab="Residual")
# For categorical variable
boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Residuals")

# Check normality just in case
# QQ Normality plots
qqnorm(resid(model_3_reduced), main = "Normal Q-Q Plot")
qqline(resid(model_3_reduced))

Model Selection
# Full transformed model (same as model_3)
full_model <- lm(

t_y ~ bpm + t_streams + `valence_%` + `energy_%` +
`acousticness_%` + `liveness_%` + `speechiness_%` +
mode_binary + t_playlist + mode_binary*`speechiness_%`,

df_spotify
)

# Null model, intercept only
null_model <- lm(t_y ~ 1, data = df_spotify)

# Forward Selection with AIC
forward_model <- stepAIC(

null_model,
scope = list(

lower = null_model,
upper = full_model

),
direction = "forward",
trace = TRUE

)

summary(forward_model)

9



# Backward

backward_model <- stepAIC(
full_model,
direction = "backward",
trace = TRUE

)

summary(backward_model)

# Stepwise

stepwise_model <- stepAIC(
full_model,
direction = "both",
trace = TRUE

)

summary(stepwise_model)

AIC(full_model, forward_model, backward_model, stepwise_model)

BIC(full_model, forward_model, backward_model, stepwise_model)

c(
full = summary(full_model)$adj.r.squared,
forward = summary(forward_model)$adj.r.squared,
backward = summary(backward_model)$adj.r.squared,
stepwise = summary(stepwise_model)$adj.r.squared

)

# all selection algorithms give same model as each other and as the anova test. and has better goodness metrics than the full one. yay!

10


	HOW TO FIX:
	Recall from week 9 - BEST model selection
	Model Selection

