R Notebook

{r, warning = FALSE} library(readr) library(tidyverse) library(dplyr)
library(leaps) library(car) library(MASS)

{r, echo = FALSE} df_spotify <- read_csv("spotify-2023.csv")
#glimpse (df_spotify) #names(df_spotify)

1. Summary Statistics of variables selected for MLR

# Streams was originally of chr type. Changed it to dbl type.
df _spotify <- df_spotify %>% mutate(streams = as.numeric(streams))

par (mfrow=c(3,3))
hist(df_spotify$ - danceability_%")
hist(df_spotify$bpm)
hist(df_spotify$streams)
hist(df_spotify$” speechiness_%")
hist(df_spotify$ valence_%")
hist(df_spotify$ energy_ %)
hist(df_spotify$ acousticness_%")
hist(df_spotify$ liveness_%")
hist(df_spotify$ instrumentalness_%")
# Remove this from 0G model - data points don't make sense it context

# List your predictor columns exactly as they appear in your data

predictor_cols <- c("danceability_%",
"bpm", "streams", "valence_%", "energy_%", "acousticness_%", "liveness_%", "speechiness_}'
"mode_binary", "in_spotify_playlists"

)

# Creating mode_binary variable which is 1 if mode is Major and O for Minor.
df _spotify <- df_spotify %>% mutate(mode_binary = ifelse(mode == 'Major', 1, 0))

df _pred <- df_spotify %>%
mutate (
streams = as.numeric(gsub(",", "", as.character(streams))),
mode_binary = as.numeric(as.character(mode_binary))

) W%



select(all_of (predictor_cols))

summary_table <- map_dfr(names(df_pred), function(v) {
x <- df_pred[[v]]

tibble(
variable = v,
n = sum('!is.na(x)),
mean = round(mean(x, na.rm = TRUE), 2),
sd = round(sd(x, na.rm = TRUE), 2),
min = round(suppressWarnings(min(x, na.rm = TRUE)), 2),
max = round(suppressWarnings(max(x, na.rm = TRUE)), 2)
)
)

summary_table

2. Data Cleaning for MLR

# Creating mode_binary variable which is 1 if mode is Major and O for Minor.
df _spotify <- df_spotify %>J mutate(mode_binary = ifelse(mode == 'Major', 1, 0))

# Streams was originally of chr type. Changed it to dbl type.
df_spotify <- df_spotify %>’ mutate(streams = as.numeric(streams))

# Note that in streams, observation #575 had an inconsistency: instead of displaying # of st
df_spotify <- df_spotify %>, filter(track_name != "Love Grows (Where My Rosemary Goes)")

Justification for interaction term prior to fitting model

major <- df_spotify[df_spotify$mode_binary == 1, ]
minor <- df_spotify[df_spotify$mode_binary == 0, ]

# Note that danceability is response variable
par (mfrow=c(2,2))
boxplot (df_spotify$ - danceability_% ~ df_spotify$mode_binary)

# plotting relationship between Danceability % and bpm for major/minor

plot(df_spotify$ danceability_%  ~ df_spotify$bpm, xlab="Bpm", ylab="Danceability %", type='
points(major$ danceability_%  ~ major$bpm, col="blue")

points(minor$ danceability_% ~ ~ minor$bpm, col="black")

lines(lowess(major$ danceability_%~ ~ major$bpm), col="blue")

lines(lowess(minor$ danceability_%~ ~ minor$bpm), col="black")

# plotting relationship between Danceability % and “valence_%  for major/minor
plot(df_spotify$ - danceability_%  ~ df_spotify$ valence_% , xlab=""valence_% ", ylab="Danceal
points(major$ danceability_%~ ~ major$ valence_% , col="blue")

points(minor$ danceability_%~ ~ minor$ valence_% , col="black")



lines(lowess(major$ danceability_%~ ~ major$ valence_% ), col="blue")
lines(lowess(minor$ danceability_%~ ~ minor$ valence_}% ), col="black")

# plotting relationship between Danceability % and ~speechiness_% s for major/minor
plot(df_spotify$ danceability_%  ~ df_spotify$ speechiness_J,”, xlab=""~speechiness_% ", ylal
points(major$ danceability_%  ~ major$ speechiness_% , col="blue")

points(minor$ danceability_%  ~ minor$ speechiness_%~, col="black")

lines(lowess(major$ danceability_%~ ~ major$ speechiness_%), col="blue")
lines(lowess(minor$ danceability_J%  ~ minor$ speechiness_% ), col="black")

# Since relationship between danceability 7% and speechiness % seems to differ for major/min

2. Fit MLR Model

# Ensures categorical use for mode
df_spotify$mode_binary <- factor(df_spotify$mode_binary)

model <- 1m( danceability_%  ~ bpm + streams + “valence_}  + “energy_’%  + “acousticness_}’

summary (model)
3. Checking MLR Assumptions

# Need to check for linearity, constant variance, uncorrelated errors, and normality.
# How to? Plots!

# Residuals vs fitted plot

y_value <- resid(model)

x_value <- fitted(model)

plot(x = x_value, y = y_value, main="Residual vs Fitted", xlab="Fitted", ylab="Residuals")

par (mfrow=c(1,2))

# QQ Normality plots

qqnorm(resid(model) , main = "Normal Q-Q Plot")
gqqline(resid(model))

# Response vs Fitted plot

y_value2 <- df_spotify$bpm

x_value2 <- fitted(model)

plot(x = x_value2, y = y_value2, main="Response vs Fitted", xlab="Fitted", ylab="Actual Res;

# Plot of relationship between predictor variables and also outcome variable
pairs(c(df_spotify[, 18], df_spotifyl[, 7], df_spotify[, 9], df_spotify[, 15], df_spotifyl[,



par (mfrow=c(2,2))

# Residuals vs each predictor

plot(x = df_spotify$bpm, y = y_value, main="Residual vs Bpm", xlab="Bpm", ylab="Residual")
plot(x = df_spotify$streams, y = y_value, main="Residual vs Streams", xlab="Streams", ylab='
plot(x = df_spotify$ valence_% , y = y_value, main="Residual vs Valence %", xlab="Valence 7
plot(x = df_spotify$ energy_% , y = y_value, main="Residual vs Energy %", xlab="Energy %", :

par (mfrow=c(2,2))

plot(x = df_spotify$ acousticness_% , y = y_value, main="Residual vs Acousticness %", xlab='
plot(x = df_spotify$ liveness_% , y = y_value, main="Residual vs Liveness %", xlab="Livenes:
plot(x = df_spotify$ speechiness_% , y = y_value, main="Residual vs Speechiness %", xlab="S§;

1]
I~

par (mfrow=c(1,2))

plot(x = df_spotify$in_spotify_playlists, y = y_value, main="Residual vs in_spotify_playlis:
# For categorical variable

boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Resi

HOW TO FIX:

1. Check Multi-collinearity among predictors

2. Check points that simply don’t make sense from descriptive stats
3. Transformations

4. Nested models

#1. Multi collinearity

# x includes all predictors in original model: in_spotify_playlists, streams, bpm, valence_;
x <- cbind(df_spotify[, 7], df_spotifyl[, 9], df_spotify[, 15], df_spotify[, 19:21], df_spot:

x_num <- as.matrix(x)

qr (x_num) $rank
ncol (x_num)
# This shows that the rank is the same as number of columns (no lin dependent columns). FULI

# vif (model)
# No vif > 5 = keep all predictors.

x_numeric <- x %>% select(-mode_binary)
cor (x_numeric)
# Also supports previous points

# THUS, NO MULTICOLLINEARITY IN OG MODEL

#2. Check for problematic observations



# leverage statistic

h_jj <- hatvalues(model)

# standardized residuals

r_j <- rstandard(model)

# cook's distance

D_j <- cooks.distance(model)
# dffits

dffits_j <- dffits(model)

# dfbetas

dfbetas_j <- dfbetas(model)

# number of predictors and observations
n <- nobs(model)
p <- length(coef(model)) - 1

# leverage cutoff

hcut <- 2 * ((p +1) / n)

# cook's distance cutoff

cookcut <- qf(0.5, dflt = p + 1, df2 =n - p - 1)
# dffits cutoff

fitcut <- 2 * sqrt((p+1)/n)

# dfbeta cutoff

betacut <- 2 / (sqrt(n))

# which observations are leverage points?

which(h_jj > hcut)

# which observations are regression outliers?

which(r_j > 4 | r_j < -4)

# which observations are influential by cook's distance?
which(D_j > cookcut)

# which observations are influential by dffits?
which(abs(dffits_j) > fitcut)

# After initial check of problematic observations, we realized that high influential points

# NO RATIONALE TO REMOVE ANY SONGS.

#3. Transformation of Variables

Normality

p_box <- powerTransform(cbind(df_spotify[, 18], df_spotifyl[, 7], df_spotify[, 9], df_spotif:
#summary (p_box)

# fix worst transformation first, check residual plots after every transformation, avoid to

# 1. Normality



t_y <- (df_spotify$ - danceability_% ) ~ 2 # value of lambda obtained by BoxCox

model_1 <- lm(t_y ~ bpm + streams + “valence_}~ + “energy_%  + “acousticness_}~ + ~livenes:

# Now we check residual plots

par (mfrow=c(2,2))

y_value_1 <- resid(model_1)

x_value_1 <- fitted(model_1)

plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="I

# Residuals vs each predictor

plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual".
plot(x = df_spotify$streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylal
plot(x = df_spotify$ valence_% , y = y_value_1, main="Residual vs Valence %", xlab="Valence

par (mfrow=c(2,2))
plot(x = df_spotify$ energy_% , y = y_value_1, main="Residual vs Energy %", xlab="Energy %"

plot(x = df_spotify$ acousticness_% , y = y_value_1, main="Residual vs Acousticness %", xlal
plot(x = df_spotify$ liveness_% , y = y_value_1, main="Residual vs Liveness %", xlab="Liven
plot(x = df_spotify$ speechiness_% , y = y_value_1, main="Residual vs Speechiness %", xlab='

]
I~

par (mfrow=c(2,2))

plot(x = df_spotify$in_spotify_playlists, y = y_value_1, main="Residual vs in_spotify_playl:
# For categorical variable

boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Resi

# Check normality just in case

# QQ Normality plots

qqnorm(resid(model_1), main = "Normal Q-Q Plot")
qqline(resid(model_1))

# random noise at tails

Constant Variance

In_ spotify_ playlist

# From Residual plots, we see that multiple predictors exhibit non constant variance. First

t_playlist <- log(df_spotify$in_spotify_playlists)

model_2 <- 1m(t_y ~ bpm + streams + “valence_)  + “energy_%  + “acousticness_%  + "~livenes:s

# Now we check for residuals



par (mfrow=c(2,2))

y_value_1 <- resid(model_2)

x_value_1 <- fitted(model_2)

plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="I

# Residuals vs each predictor

plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual".
plot(x = df_spotify$streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylal
plot(x = df_spotify$ valence_ %, y = y_value_1, main="Residual vs Valence %", xlab="Valence

par (mfrow=c(2,2))
plot(x = df_spotify$ energy_ % , y = y_value_1, main="Residual vs Energy %", xlab="Energy %"

plot(x = df_spotify$ acousticness_%~, y = y_value_1, main="Residual vs Acousticness J", xlal
plot(x = df_spotify$ liveness_% , y = y_value_1, main="Residual vs Liveness %", xlab="Liven
plot(x = df_spotify$ speechiness_% , y = y_value_1, main="Residual vs Speechiness ", xlab='

1]
[

par (mfrow=c(2,2))

plot(x = t_playlist, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spoti:
# For categorical variable

boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Resi

# Check normality just in case

# QQ Normality plots

qqnorm(resid(model_2), main = "Normal Q-Q Plot")
qqline(resid(model_2))

Streams

t_streams <- log(df_spotify$streams) # boxcox said 0.14 and log looks like cluster so bette:

model_3 <- Im(t_y ~ bpm + t_streams + “valence_),” + “energy_J  + “acousticness_J~ + ~livenc

# Now we check for residuals

par (mfrow=c(2,2))

y_value_1 <- resid(model_3)

x_value_1 <- fitted(model_3)

plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="I

# Residuals vs each predictor

plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual".
plot(x = t_streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylab="Residu
plot(x = df_spotify$ valence_% , y = y_value_1, main="Residual vs Valence %", xlab="Valence

par (mfrow=c(2,2))
plot(x = df_spotify$ energy %, y = y_value_1, main="Residual vs Energy %", xlab="Energy %"



y_value_1, main="Residual vs Acousticness %", xlal

plot(x = df_spotify$ acousticness_% , y =
y_value_1, main="Residual vs Liveness %", xlab="Livene

plot(x = df_spotify$ liveness_% ", y
plot(x = df_spotify$ speechiness_¥% , y = y_value_1, main="Residual vs Speechiness ", xlab='

]
[

par (mfrow=c(2,2))

plot(x = t_playlist, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spoti:
# For categorical variable

boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Resi

# Check normality just in case

# QQ Normality plots

qgnorm(resid(model_3), main = "Normal Q-Q Plot")
qqline(resid(model_3))

Recall from week 9 - BEST model selection

best <- regsubsets(t_y ~ bpm + t_streams + “valence_%  + “energy_%  + “acousticness_% +

summary (best)

#4. Nested Models

summary (model_3) # By looking at summary, we see that t_streams, and interaction term are 1

# Thus, we build reduced model without those
# Further supported by best selection model

model_3_reduced <- I1m(t_y ~ bpm + t_playlist + “valence_}~ + “energy_%  + “acousticness_}’

anova(model_3_reduced, model_3)
# small p value = drop = full model better
# large p value = reduced model better

summary (model_3_reduced)

# Now we check for residuals

par (mfrow=c(2,2))

y_value_1 <- resid(model_3_reduced)

x_value_1 <- fitted(model_3_reduced)
plot(x = x_value_1, y = y_value_1, main="Residual vs Fitted Model 1", xlab="Fitted", ylab="I

# Residuals vs each predictor
plot(x = df_spotify$bpm, y = y_value_1, main="Residual vs Bpm", xlab="Bpm", ylab="Residual"



plot(x = t_streams, y = y_value_1, main="Residual vs Streams", xlab="Streams", ylab="Residu:
plot(x = df_spotify$ valence_% , y = y_value_1, main="Residual vs Valence %", xlab="Valence

par (mfrow=c(2,2))
plot(x = df_spotify$ energy_ %, y = y_value_1, main="Residual vs Energy %", xlab="Energy %"

plot(x = df_spotify$ acousticness_% , y = y_value_1, main="Residual vs Acousticness %", xlal
plot(x = df_spotify$ liveness_% , y = y_value_1, main="Residual vs Liveness %", xlab="Liven
plot(x = df_spotify$ speechiness_% , y = y_value_1, main="Residual vs Speechiness %", xlab='

]
[

par (mfrow=c(2,2))

plot(x = t_playlist, y = y_value_1, main="Residual vs in_spotify_playlists", xlab="in_spoti:
# For categorical variable

boxplot(y_value ~ df_spotify$mode_binary , main="Residual vs Mode", xlab="Mode", ylab="Resic

# Check normality just in case

# QQ Normality plots

qqnorm(resid(model_3_reduced), main = "Normal Q-Q Plot")
gqline(resid(model_3_reduced))

Model Selection

# Full transformed model (same as model_3)
full_model <- 1m(

t_y ~ bpm + t_streams + “valence_)  + “energy_i% +
“acousticness_Y%  + “liveness_%  + “speechiness_J~ +
mode_binary + t_playlist + mode_binary* speechiness_%",

df _spotify

)

# Null model, intercept only
null_model <- 1lm(t_y ~ 1, data = df_spotify)

# Forward Selection with AIC
forward_model <- stepAIC(
null model,
scope = list(
lower = null_model,
upper = full_model

),

direction = "forward",
trace = TRUE

summary (forward_model)



# Backward

backward_model <- stepAIC(
full _model,
direction = "backward",
trace = TRUE

summary (backward_model)

# Stepwise

stepwise_model <- stepAIC(
full model,

direction = "both",
trace = TRUE

summary (stepwise_model)

ATIC(full_model, forward_model, backward_model, stepwise_model)

BIC(full_model, forward_model, backward_model, stepwise_model)

c(
full = summary(full_model)$adj.r.squared,

forward = summary(forward_model)$adj.r.squared,
backward = summary(backward_model)$adj.r.squared,
stepwise = summary(stepwise_model)$adj.r.squared

)

# all selection algorithms give same model as each other and

10

as the anova test.

and has bet
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